刘晓庆

博士 , 教授
研究方向: 分析化学
联系电话:
Email: xiaoqingliu@whu.edu.cn

教育与研究经历:

     2009年初毕业于中科院长春应用化学研究所电分析化学国家重点实验室,山东人。2009至2015年先后在丹麦奥胡斯大学化学系、交叉学科纳米中心,以色列耶路撒冷希伯来大学化学研究所、纳米科学与技术中心工作。2015年加入武汉大学化学与分子科学学院,任教授、博士生导师。主要从事基于纳米技术的生物分析研究。曾获中科院刘永龄特等奖、中组部项目重点资助。

研究领域与兴趣:

    研究兴趣包括生物分析化学、DNA纳米技术、生物医学材料等。主要围绕核酸结构的组装与调控,开发先进材料与探针,用于传感检测、生物分析、精准诊疗研究。相关成果发表在Angew. Chem. Int. Ed., J. Am. Chem. Soc., Nat. Commun., Chem. Sci., Anal. Chem., ACS Nano, Nano Lett., Acc. Chem. Res., Adv. Mater., Adv. Funct. Mater., Biomaterials等SCI国际期刊100余篇,其中4篇ESI高被引论文,授权专利6项。ORCID: https://orcid.org/0000-0002-1309-5454

招生招聘:

    在这里,有武大强力的学科支撑,有化院完善的科研条件,有我们积极向上、友爱互助的课题组氛围。欢迎化学、材料、医学或生物等学科背景的本科生、研究生以及博士后加入我们。

部分论文:

(1) Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angew. Chem. Int. Ed., 2021, https://doi.org/10.1002/anie.202111093

(2)   Precision Spherical Nucleic Acids Enable Sensitive FEN1 Imaging and Controllable Drug Delivery for Cancer Specific Therapy. Anal. Chem., 2021, 93(32), 11275–11283. https://doi.org/10.1021/acs.analchem.1c02264

(3) A Cooperatively Activatable DNA Nanoprobe for Cancer Cell-Selective Imaging of ATP. Anal. Chem., 2021, https://doi.org/10.1021/acs.analchem.1c03284

(4)   Bio-Inspired Dynamic Biomolecule Assembling for Fine Regulation of Protein Activity. Chem. Commun., 2021, 57, 11205-11208. https://doi.org/10.1039/D1CC03926A

(5)   A smart multiantenna gene theranostic system based on the programmed assembly of hypoxia-related siRNAs. Nat. Commun., 2021, 12, 3953. https://doi.org/10.1038/s41467-021-24191-9

(6)   Precision Photothermal Therapy and Photoacoustic Imaging by In Situ Activatable Thermoplasmonics. Chem. Sci., 2021, 12, 10097-10105. https://doi.org/10.1039/D1SC02203B

(7)   Regulation of Redox Balance Enhances Phototherapy Efficacy and Suppresses Tumor Metastasis Using a Biocompatible Nanoplatform, Chem. Sci., 2021, 12, 148-157.https://doi.org/10.1039/D0SC04983B (Highlighted as Outside Front Cover)

(8) Modulation of Oxidative Stress in Cancer Cells with A Biomineralized Converter. ACS Materials Lett., 2021, 3, 1773-1785. https://doi.org/10.1021/acsmaterialslett.1c00470

(9)   A Bionanozyme with Ultrahigh Activity Enables Spatiotemporally Controlled Reactive Oxygen Species Generation for Cancer Therapy. Adv. Funct. Mater., 2021, 31, 2104100. https://doi.org/10.1002/adfm.202104100

(10) An efficient photochemotherapy nanoplatform based on the endogenous biosynthesis of photosensitizer in macrophage-derived extracellular vesicles, Biomaterials, 2021, 279, 121234.  https://doi.org/10.1016/j.biomaterials.2021.121234

(11) A mitochondrial oxidative stress amplifier to overcome hypoxia resistance for enhanced photodynamic therapy. Small Methods, 2021, 5(9), 2100581. https://doi.org/10.1002/smtd.202100581

(12) In situ generated and amplified oxidative stress with metallo-nanodrug assembly for metastatic cancer therapy with high specificity and efficacy. Adv. Therap., 2021, https://doi.org/10.1002/adtp.202100148

(13) Multiple Blockades of the HGF/Met Signaling Pathway for Metastasis Suppression Using Nanoinhibitors. ACS Appl. Mater. Inter., 2021, 13(26), 30350–30358.  https://doi.org/10.1021/acsami.1c07010

(14) Cascaded Amplifier Nanoreactor for Efficient Photodynamic Therapy. ACS Appl. Mater. Inter., 2021, 13(14), 16075–16083. https://doi.org/10.1021/acsami.1c01683

(15) Programming DNA Nanoassembly for Enhanced Photodynamic Therapy, Angew. Chem. Int. Ed., 2020, 59(5), 1897-1905. https://doi.org/10.1002/anie.201915591 (Highlighted as Front Cover)

(16) Biosynthesized Quantum Dot for Facile and Ultrasensitive Electrochemical and Electrochemiluminescence Immunoassay, Anal. Chem.2020, 92(1), 1598-1604.  https://doi.org/10.1021/acs.analchem.9b04919

(17) Immunostimulatory DNA Nanogel Enables Effective Lymphatic Drainage and High Vaccine Efficacy, ACS Materials Lett., 2020, 2(12), 1606–1614. https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00445 (Highlighted as Supplementary Cover)

(18) Enhanced Immunostimulatory Activity of a Cytosine-Phosphate-Guanosine Immunomodulator by the Assembly of Polymer DNA Wires and Spheres, ACS Appl. Mater. Inter., 2020, 12(15), 17167-17176. https://doi.org/10.1021/acsami.9b21075

(19) Quantum Dot-Pulsed Dendritic Cell Vaccines Plus Macrophage Polarization for Amplified Cancer Immunotherapy, Biomaterials2020, 242, 119928. https://doi.org/10.1016/j.biomaterials.2020.119928

(20) Treating Immunologically Cold Tumors by Precise Cancer Photoimmunotherapy with an Extendable Nanoplatform, ACS Appl. Mater. Inter., 2020, 12(36), 40002–40012. https://doi.org/10.1021/acsami.0c09469

(21) Effective Nanotherapeutic Approach for Metastatic Breast Cancer Treatment by Supplemental Oxygenation and Imaging-Guided Phototherapy, Nano Research2020, 13, 1111-1121. https://doi.org/10.1007/s12274-020-2753-5

(22) Plasmonic and Photothermal Immunoassay via Enzyme-Triggered Crystal Growth on Gold Nanostars, Anal. Chem.2019, 91(3), 2086–2092. https://doi.org/10.1021/acs.analchem.8b04517

(23) Versatile Catalytic Deoxyribozyme Vehicles for Multimodal Imaging-Guided Efficient Gene Regulation and Photothermal Therapy, ACS Nano2018, 12 (12), 12888–12901. https://doi.org/10.1021/acsnano.8b08101

(24) DNA Switches: From Principles to Applications. Angew. Chem. Int. Ed. 2015, 54, 1098–1129. https://doi.org/10.1002/anie.201404652

(25) Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 2014, 47, 1673–1680. https://doi.org/10.1021/ar400316h

(26) Dual Switchable CRET-Induced Luminescence of CdSe/ZnS Quantum Dots (QDs) by the Hemin/G-Quadruplex-Bridged Aggregation and Deaggregation of Two-Sized QDs. Nano Lett. 2014, 14, 6030-6035. https://doi.org/10.1021/nl503299f

(27) Graphene Oxide/Nucleic Acid-Stabilized Silver Nanoclusters: Functional Hybrid Materials for Optical Aptamer Sensing and Multiplexed Analysis of Pathogenic DNAs. J. Am. Chem. Soc. 2013, 135, 11832–11839. https://doi.org/10.1021/ja403485r

(28) Probing Biocatalytic Transformations with Luminescent DNA/Ag Nanoclusters. Nano Lett. 2013, 13, 309–314. https://doi.org/10.1021/nl304283c

(29) Switching Photonic and Electrochemical Functions of a DNAzyme by DNA Machines. Nano Lett. 2013, 13, 219–225.https://doi.org/10.1021/nl303894h

(30) Multiplexed Aptasensors and Amplified DNA Sensors Using Functionalized Graphene Oxide: Application for Logic Gate Operations. ACS Nano 2012, 6, 3553–3563.https://doi.org/10.1021/nn300598q

(31) Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer_Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots. J. Am. Chem. Soc. 2011, 133, 11597–11604. https://doi.org/10.1021/ja202639m

(32) Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) Aptamer Sensors Using Catalytic Hemin/G-Quadruplexes. ACS Nano 2011, 5, 7648–7655.https://doi.org/10.1021/nn202799d

(33) Environmentally Friendly and Highly Sensitive Ruthenium(II) Tris(2,2'-bipyridyl) Electrochemiluminescent System Using 2-(dibutylamino)ethanol as Co-Reactant. Angew. Chem. Int. Ed. 2007, 46, 421–424. DOI: 10.1002/anie.200603491 (VIP, Very Important Paper)

专利:

(1) 发明人李景虹,王美佳,刘晓庆,专利名称:脱氧核糖核酸电化学纳米传感器的制备方法, 专利号: 03127158.8, 公开号:CN1525163,授权公告日:2005.08.17

(2) 发明人: 徐国宝刘晓庆史立红专利名称:环境友好的高灵敏电化学发光检测方法, 专利号:200510016848.4, 公开号: CN1696666,授权公告日:2010.01.27

(3) 发明人: 徐国宝, 史立红, 刘晓庆, 牛文新, 专利名称:三联吡啶钌电化学发光测定血浆钙的方法,专利号: 200510017231.4, 公开号:CN1773259,授权公告日: 2009.05.20

(4) 发明人徐国宝, 史立红,刘晓庆,李海娟,专利名称:溶胶-凝胶法制备的碳陶瓷材料的应用,专利号: 200510017012.6,公开号:CN1736581,授权公告日:2007.10.10

(5) 发明人徐国宝,史立红,刘晓庆,专利名称: Nafion-碳陶瓷复合材料电化学发光传感器的制备方法,专利号:CN200510016770.6, 公开号: CN1693285,授权公告日:2007.05.09

(6) Itamar Willner, Fuan Wang, Chun-Hua Lu, Xiaoqing Liu, Lina Freage, Compositions, kits, uses and methods for amplified detection of an analyte, United States Patent 9809846, Application Number:14/586214, Publication Date: 11/07/2017, Filing Date: 12/30/2014

课题组网址 http://xiaoqingliu.whu.edu.cn/